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6.1.1 Phase

@ Phase : une phase est un état de la matiere qui occupe un sous-espace
de I'espace des états caractérisé par des propriétés physiques particulieres
du systeme.

@ Phases principales :

@ Solide : la matiere conserve son volume et sa forme géométrique dans un
récipient.

@ Liquide : la matiere conserve son volume mais prend la forme
géométrique du récipient.

© Gaz : la matiere se répartit dans le volume du récipient et prend la forme
géométrique du récipient.

@ Autres phases :

© Plasma : 3 tres haute température, certains électrons se liberent de
|"attraction électrostatique des noyaux atomiques.

@ Supraconducteur : 3 basse température, certains matériaux ont une
résistivité nulle et une conductivité électrique infinie.

© Superfluidité : a basse température, certains matériaux ont une viscosité
nulle.
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6.1.1 Expérience - Plasma

@ Un plasma est créé par ionisation de I'air (azote) qui entoure un
conducteur porté a trés haute tension (effet corona). Par effet de pointe,
I"ionisation a lieu autour des parties pointues du conducteur a trés haute
tension. Les décharges électriques sont accompagnées d'un bruit de
crépitement. L'ionisation de I'azote donne lieu a un plasma (couleur
bleu-violet). Une odeur particuliere accompagne ce phénomene car de
nombreux composés chimiques sont créés, notamment de |'ozone.

© Un plasma est créé par ionisation d'un gaz qui entoure la sphere
métallique interne portée a tres haute tension par rapport a la sphere
externe. Le plasma est généré le long des lignes de champ électrique
radial.
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6.1.1 Expérience - Supraconductivité

ECOLE P
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©Q Au dessous d'une température critique, la résistivité d'un
supraconducteur devient nulle. Le champ magnétique est expulsé de
I'intérieur du supraconducteur (effet Meissner). Ceci génére une force
magnétique répulsive qui permet au supraconducteur de léviter.

©Q Un modele réduit de train lévite au-dessus d’'une voie recouverte
d’aimants par effet Meissner. Le train est entrainé par un moteur linéaire.
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6.1.2 Transition de phase

@ Transition de phase : une transition de phase est le passage d'une
phase instable vers une phase stable du systéme en réponse a un
processus physique.

@ Transitions de phases principales :
@ Solide — liquide : fusion
@ Liquide — solide : solidification
© Liquide — gaz : vaporisation

@ Gaz — liquide : condensation

@ Gaz — solide : déposition

solidification

fusion

@ Solide — gaz : sublimation

@ Stabilité : l'instabilité d'une phase génere une transition de la phase
instable (initiale) vers la phase stable (finale).

@ Analogie avec la mécanique : un objet dans un état d'équilibre initial
instable évolue vers un état d'équilibre final stable.

@ Démarche : pour caractériser les transitions de phase, on étudie les
conditions de stabilité de I'entropie et des potentiels thermodynamiques.
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6.1.2 Expérience - Glace carbonique

@ Le gaz carbonique est stocké a haute pression dans une bonbonne.
Lorsqu’on ouvre la vanne, il s'échappe de la bonbonne et subit une
détente qui provoque un refroidissement important.

@ Le refroidissement du gaz carbonique provoque une déposition du COs
qui transforme le gaz carbonique en glace carbonique a une température
de — 69°C : c’est une transition de phase de la phase gazeuse a la phase

solide.
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6.1.2 Expérience - Pendule magnétique

© Un pendule est constitué d'une vis en fer attachée a deux fils métalliques.
A température ambiante, la vis est attirée par un aimant situé derriere
une plaque isolante blanche.

© On chauffe la vis avec un bec Bunsen. Lorsque la vis atteint une
température de 700°C, appelée température de Curie, elle subit une
transition de phase de la phase aimantée a la phase non aimantée.

© En perdant son aimantation, la vis se met a osciller. En refroidissant, elle
subit une transition de phase inverse, de phase non aimantée a la phase
aimantée. Elle est alors a nouveau attirée par I'aimant.
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6.1.2 Expérience - Formation de cristaux

@ On observe au microscope la formation et la croissance des cristaux. Pour
ce faire on chauffe légérement avec le pistolet a air chaud les préparations
d'hyposulfite de soude, que I'on laisse refroidir lentement.

@ Lorsque la température descend au-dessous d'une certaine valeur, la
solution subit une transition de phase qui fait apparaitre des cristaux
colorés qui croissent et envahissent toute la solution.
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6.2 Concavité de I'entropie

6.2 Concavité de I'entropie
6.2.1 Conditions globales de concavité
6.2.2 Conditions locales de concavité
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6.2.1 Conditions globales de concavité

e Concavité de I’entropie : |'entropie S (U, V') est une fonction concave
de I'énergie interne U et du volume V dans |'espace des états (U, S, V).

@ Processus interne : un systeme isolé est constitué de deux
sous-systemes simples 1 et 2 initialement séparés par une paroi. La paroi
est ensuite retirée. Le systeme devient alors un systeme simple qui évolue
vers un état d'équilibre final.

@ Variables d’état :

© Etat initial : énergie interne et volume (U, Ua, V1, V)

© Etat final : énergie interne et volume (2U,2V)

@ Premier principe : systéme isolé : énergie interne et volume constants
(6.1)
@ Deuxieme principe : systeme isolé : entropie tendant vers un maximum

(6.2)
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6.2.1 Conditions globales de concavité

©Q Energies internes initiales différentes : conditions initiales avec des
énergies internes différentes et des volumes identiques.

(6.3)
o Entropie finale : (6.1) et (6.3) grandeur extensive
(6.4)
@ Condition globale de concavité : entropie
S (U, Vi)+ S Uz, Vo) < S(2U0,2V) (6.2)

o Condition globale de concavité : (6.3) et (6.4) dans (6.2)

(6-5)J

La condition globale de concavité (6.5) signifie que I'entropie S (U, V)
est globalement une fonction concave de |'énergie interne U.
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6.2.1 Conditions globales de concavité

e Condition globale de concavité de I’entropie : (6.5)

1
: (s (U — AU, V) + S (U + AU, V)) < S(U,V) (6.5)
S A
S(U,V)
%(S(U— AU,V)+S(U+AU,V))

=V
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6.2.1 Conditions globales de concavité

© Volumes initiaux différents : conditions initiales avec des énergies
internes identiques et des volumes différents.

(6.6)
o Entropie finale : (6.1) et (6.6) grandeur extensive
SQ2U,2V)=2SU,V) (6.4)
@ Condition globale de concavité : entropie
S (U, Vi)+ S Uz, Vo) < S(2U0,2V) (6.2)

e Condition globale de concavité : (6.6) et (6.4) dans (6.2)

(6-7)J

La condition globale de concavité (6.7) signifie que I'entropie S (U, V)
est globalement une fonction concave du volume V.
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6.2.1 Conditions globales de concavité

e Condition globale de concavité de I’entropie : (6.7)

% (S(W.V~ AV) 4 S(U.V +AV)) < 5(U.V) (6.7)

SA

S (U, V)

%(S(U,V— AV)+S(U,V+AV))
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6.2.1 Conditions globales de concavité

© Energie internes et volumes initiaux différents : conditions initiales

(6.8)
o Entropie finale : (6.1) et (6.8) grandeur extensive
SQ2U,2V)=25U,V) (6.4)
@ Condition globale de concavité : entropie
S (U, V1) + S Uz, Vo) < S(2U,2V) (6.2)

e Condition globale de concavité : (6.8) et (6.4) dans (6.2)

(6-9)J

La condition globale de concavité (6.9) signifie que I'entropie S (U, V') est
globalement une fonction concave de I'énergie interne U et du volume V.
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6.2.2 Conditions locales de concavité

@ Conditions locales : pour décrire des transitions de phase, caractérisées

par des discontinuités des dérivées partielles des variables d'état U, S et
V', il est nécessaire de déterminer également les conditions locales de
concavité de l'entropie S.

Conditions locales et globales : les conditions locales sont définies
dans le voisinage d'un point dans |'espace des états (U, .S, V'), alors que
les conditions globales sont définies sur tout |'espace. Les conditions
locales de concavité, qui doivent étre satisfaites pour AU — 0 et

AV — 0, sont moins restrictives que les conditions globales de concavité
qui doivent étre satisfaites pour tout AU et AV.

Condition globale de concavité de I'entropie : S par rapport a U
SWU—- AU, V)+S(U+ AU, V) <25 U,V) (6.5)

Développement limité de I'’entropie : au deuxieme ordre en AU
autour de S (U, V)

(6.8)
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6.2.2 Conditions locales de concavité

e Condition locale de concavité de I'entropie : (6.10)

e Condition locale de concavité de I’entropie : (6.8) dans (6.10)

@ Condition globale de concavité de I'entropie : S par rapport a V'
SWU,V-AV)+SUV +AV)<L25(U,V) (6.7)

@ Développement limité de lI'entropie : au deuxieme ordre en AV
autour de S (U, V)

(6.9)

e Condition locale de concavité de I’entropie : (6.11)
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6.2.2 Conditions locales de concavité

e Condition locale de concavité de I’entropie : (6.9) dans (6.11)

@ Conditions locales de concavité de I’entropie :

(6.12)J

@ Courbure de Gauss positive : de la surface S (U, V') dans I'espace des
états (U, S,V)

(6.13)J

En application, on établira la condition (6.13) en faisant un dévelop-
pement limité au 2° ordre en AU et AV de la condition globale de
concavité (6.9).
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6.2.2 Conditions locales de concavité

@ Courbure de Gauss : déterminant de la matrice hessienne de |'entropie

(6.14)
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6.3 Convexité de I’énergie interne

6.3 Convexité de I’énergie interne
6.3.1 Conditions globales de convexité
6.3.2 Conditions locales de convexité

Dr. Sylvain Bréchet 6 Transitions de phase 24 / 116



6.3.1 Conditions globales de convexité

o Convexité de I'énergie interne : |'énergie interne U (S, V') est une
fonction convexe de I'entropie S et du volume V' dans |'espace des états
(U,S,V).

@ Processus interne : un systéme isolé est constitué de deux
sous-systemes simples 1 et 2 initialement séparés par une paroi. La paroi
est ensuite retirée. Le systeme devient alors un systeme simple qui évolue
vers un état d’'équilibre final.

@ Variables d’état :

© Etat initial : entropie et volume (51, S2, V1, V2)

© Etat final : entropie et volume (2 5,2V)
@ Systeme isolé : premier principe
(6.15)
@ Condition de concavité de I'entropie : deuxiéme principe

(6.16)
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6.3.1 Conditions globales de convexité

@ Systeme isolé : premier principe

U (S1, V1) + Uz (S2,V2) =U (25,2V)

@ Condition de concavité de I'entropie : deuxiéme principe

St (Ul, Vl) + S5 (UQ, V2) <28 (U, V)

(6.15)

(6.16)

@ Energie interne : fonction croissante de |'entropie et fct. du volume

o Energie interne : écriture allégée (6.17)

(6.17)

(6.18)

o Condition de convexité de I'énergie interne : (6.15) dans (6.18)
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6.3.1 Conditions globales de convexité

© Entropies initiales différentes : conditions initiales avec des entropies
différentes et des volumes identiques.

@ Energie interne finale : grandeur extensive

(6.20)
@ Condition globale de convexité : énergie interne
U(S1,V1)+U(S2, Vo) > U(S1+ 52, V1 + Vs) (6.19)
e Condition globale de convexité : (6.20) dans (6.19)

(6-21)J

La condition globale de concavité (6.21) signifie que I'énergie interne
U (S,V) est globalement une fonction convexe de |'entropie S.
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6.3.1 Conditions globales de convexité

@ Condition globale de convexité de I'énergie interne :

% (U(S— AS.V) +U (S +AS.V)) > U (S,V) (6.21)
U A
%(U(S— AS,V)+U(S+AS,V))

U(S,V)

|

|

|

|

| >
S —AS 5 S+AS S
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6.3.1 Conditions globales de convexité

© Volumes initiaux différents : conditions initiales avec des entropies
identiques et des volumes différents.

@ Energie interne finale : grandeur extensive
U(S1+ 9, Vi+Va)=U(25,2V)=2U(S,V) (6.20)
@ Condition globale de convexité : énergie interne
U(S1,V1)+U(S2, Vo) > U(S1+ 52, V1 + Vs) (6.19)
e Condition globale de convexité : (6.20) dans (6.19)

(6-22)J

La condition globale de convexité (6.22) signifie que I'énergie interne
U (S,V) est globalement une fonction convexe du volume V.

Dr. Sylvain Bréchet 6 Transitions de phase 29 / 116



6.3.1 Conditions globales de convexité

@ Condition globale de convexité de I'énergie interne :

% (U(S.V — AV) + U (S.V +AV)) > U (S.V) (6.22)
U
%(U(S,V— AV)+U(S,V+AV)>

U(S,V)
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6.3.1 Conditions globales de convexité

© Entropies et volumes initiaux différents : conditions initiales

@ Energie interne finale : grandeur extensive
U(S1+ S, Vi+Vo)=U(25,2V)=2U(S5,V) (6.20)
e Condition globale de convexité : énergie interne
U(S1,V1)+U(S2, Vo) > U(S1+ 52,V + V5) (6.19)

e Condition globale de convexité : (6.20) dans (6.19)

(6-23)J

La condition globale de convexité (6.23) signifie que I'énergie interne
U (S,V) est globalement une fonction convexe de I'entropie S et du
volume V.
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6.3.2 Conditions locales de convexité

@ Conditions locales : pour décrire des transitions de phase, caractérisées

par des discontinuités des dérivées partielles des variables d'état U, S et
V', il est nécessaire de déterminer également les conditions locales de
convexité de |'énergie interne U.

Conditions locales et globales : les conditions locales sont définies
dans le voisinage d'un point dans |'espace des états (U, .S, V'), alors que
les conditions globales sont définies sur tout |'espace. Les conditions
locales de convexité, qui doivent étre satisfaites pour AS — 0 et

AV — 0, sont moins restrictives que les conditions globales de convexité
qui doivent étre satisfaites pour tout AS et AV.

Condition globale de convexité de I'énergie interne : U par rap. a S
US—AS,V)+U(S+AS,V)=2U (S,V) (6.21)

Développement limité de I'énergie interne : au deuxiéme ordre en
AS autour de U (S,V)

(6.A)
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6.3.2 Conditions locales de convexité

@ Condition locale de convexité de I'énergie interne

@ Condition locale de convexité de I'énergie interne

: (6.B)

: (6.A) dans (6.B)

@ Condition globale de convexité de I'énergie interne : U parrap. a V

US,V—-AV)+U(S,V+AV)=2U(S,V)

(6.22)

@ Développement limité de I'énergie interne : au deuxieme ordre en

AV autour de U (S, V)

(6.C)

e Condition locale de convexité de I'énergie interne : (6.D)
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6.3.2 Conditions locales de convexité

o Condition locale de convexité de I'énergie interne : (6.C) dans (6.D)

@ Conditions locales de convexité de I'énergie interne :

(6.24)J

@ Courbure de Gauss positive : de la surface U (5, V') dans I'espace des
états (U, S,V)

(6.25)J

En application, on établira la condition (6.25) en faisant un dévelop-
pement limité au 2° ordre en AS et AV de la condition globale de
convexité (6.23).
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Conditions locales de convexité

@ Courbure de Gauss : dét. de la matrice hessienne de I'énergie interne

(6.26)
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6.4 Stabilité et entropie

6.4 Stabilité et entropie
6.4.1 Criteres de stabilité de I’entropie
6.4.2 Etats stables tangents a I’entropie
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6.4.1 Criteres de stabilité de I’entropie

@ Entropie et stabilité : la stabilité d'une quantité de matiére dans un
certain état dépend du signe de la courbure de I'entropie S (U, V') par
rapport aux variables d'état énergie interne U et volume V dans |'espace

des états (U, S, V).
@ Criteres de stabilité de I’entropie :

@ Critere de stabilité par rapport a I'énergie interne : on choisit une
équation d'état S (U, V) telle que la dérivée partielle seconde de I'entropie
S par rapport a I'énergie interne U change de signe en fonction de la
valeur de U.

@ Critere de stabilité par rapport au volume : on choisit une équation
d'état S (U, V) telle que la dérivée partielle seconde de I'entropie S par
rapport au volume V' change de signe en fonction de la valeur de V.

@ Démarche : on établit d'abord le critere de stabilité de I'entropie
S (U, V') par rapport a I'énergie interne U. Le critére de stabilité par
rapport au volume V est alors obtenu de maniere analogue en remplacant

U par V.
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6.4.1 Stabilité et entropie

2
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@ Critere de stabilité locale de I'entropie : états stables

%S (U, V)
oU?

<0 (courbure locale négative ou nulle) (6.12)

© Stable : du point 0 au point A (point d'inflexion) et du point C (point
d'inflexion) au point 3 car le critére de stabilité locale (6.12) est satisfait.

© Instable : du point A au point C car le critére de stabilité locale (6.12)
n'est pas satisfait.
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6.4.2 Etats stables tangents a I’entropie

SA
| |
| V‘g-_
- | /7 2
g | /7 |
,;(% % | globalement / |  globalement
s 3 instable o, stable
el /7
2
) | / |
| ,./ |
- A
E |
| |
| | =
0 U

@ Critere de stabilité globale de I'entropie : états stables
SWU—- AU, V)+S(U+AU,V)<25U,V) (6.7)

(courbure globale négative ou nulle)
© Stable : du point 0 au point 1 (point de tangence) et du point 2 (point de
tangence) au point 3 car le critére de stabilité globale (6.26) est satisfait.

© Instable : du point 1 au point 2 car le critére de stabilité globale (6.26)
n'est pas satisfait.
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Etats stables tangents a I'entropie

@ Limite de stabilité locale : courbure nulle : segment de droite

(6.27)

o Limite de stabilité globale : tangente a S entre 1 et 2 ou A € [0, 1]

(6.28))

e Transition de phase : la tangente représente une transition d'une phase
aoulU U et S<S;aunephase Bou U >Usy et S > 5.

Dr. Sylvain Bréchet 6 Transitions de phase 40 / 116




6.5 Stabilité et potentiels thermodynamiques

6.5 Stabilité et potentiels thermodynamiques
6.5.1 Ciriteres de stabilité de I’énergie interne
6.5.2 Etats stables tangents a I’énergie interne
6.5.3 Température et pression d’une transition de phase
6.5.4 Criteres de stabilité des potentiels thermodynamiques
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6.5.1 Ciriteres de stabilité de I’énergie interne

@ Energie interne et stabilité : la stabilité d'une quantité de matiere dans
un certain état dépend du signe de la courbure de |'énergie interne
U (S,V) par rapport aux variables d’état entropie .S et volume V' dans
I'espace des états (U, S, V).

@ Criteres de stabilité de I'énergie interne :

©Q Critere de stabilité par rapport a I’entropie : on choisit une équation
d'état U (S, V) telle que la dérivée partielle seconde de I'énergie interne U
par rapport a |'entropie S change de signe en fonction de la valeur de S.

@ Critere de stabilité par rapport au volume : on choisit une équation
d'état U (S, V) telle que la dérivée partielle seconde de I'énergie interne U
par rapport au volume V' change de signe en fonction de la valeur de V.

@ Démarche : on établit d'abord le critére de stabilité de I'énergie interne
U (S,V) par rapport a I'entropie S. Le critére de stabilité par rapport au
volume V' est alors obtenu de maniére analogue en remplacant S par V.
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6.5.1 Ciriteres de stabilité de I’énergie interne

localement
stable

localement
stable A instable

@ Critere de stabilité locale de I'énergie interne : états stables

92U (S, V)
952

>0 (courbure locale positive ou nulle) (6.15)

© Stable : du point 0 au point A (point d'inflexion) et du point C (point
d'inflexion) au point 3 car le critere de stabilité locale (6.15) est satisfait.

© Instable : du point A au point C car le critére de stabilité locale (6.15)
n'est pas satisfait.
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6.5.2 Etats stables tangents a I'’énergie interne

|
|
|
| C
B —-——— 2
= o~ |
/7
e | lobalement lobalement
52 A / g(?aemen | globalemen
= 8 | instable stable
<2 ™ |
e | /
b
/ |
E |
| | -
0 S

@ Critere de stabilité globale de I'énergie interne : états stables
US—ASV)+U(S+AS,V)=2U (S,V) (6.29)

(courbure globale positive ou nulle)

© Stable : du point 0 au point 1 (point de tangence) et du point 2 (point de
tangence) au point 3 car le critére de stabilité globale (6.29) est satisfait.

© Instable : du point 1 au point 2 car le critére de stabilité globale (6.29)
n'est pas satisfait.
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6.5.2 Etats stables tangents a I'’énergie interne

>
S

@ Limite de stabilité locale : courbure nulle : segment de droite

(6.30)

e Limite de stabilité globale : tangente a U entre 1 et 2 ou A € [0, 1]

(6.31))

@ Transition de phase : la tangente représente une transition d'une phase
aouS <SS etU <U; aunephase Bou S >S5y etU > Us,. Cette
transition de phase a lieu a température 1’ et pression p constantes.
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6.5.3 Température et pression d’une transition de phase

V = cste

~
e

_|_

sy

@ Température : transition de phase a <> 3 : pente constante de la ligne
de coexistence des phases o et 3 sur le diagramme US :

(6.32)J

@ Pression : transition de phase o <+ 3 : opposé de la pente constante de
la ligne de coexistence des phases « et (§ sur le diagramme UV : (6.33)
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6.5.4 Criteres de stabilité des potentiels thermodynamiques

o Convexité locale de I'énergie interne : (5.10) dans (6.15)

(6.34)

o Capacité thermique isochore : (6.34)

(6.35))

o Convexité locale de I'énergie interne : (5.25) dans (6.22) : (6.34)

o Coefficient de compressibilité isentropique : (6.34)

(6.36) |

o Relations de Mayer et de Reech : (5.39) et (5.53)

(6.37)
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6.5.4 Criteres de stabilité des potentiels thermodynamiques

@ Relations de Mayer et de Reech :

QCV

o
Cp (Cp - CV) — Ys

TV >0 (6.37)

@ Solution physique : cohérente

@ Solution mathématique : incohérente

@ Capacité thermique isobare :

Cp=2Cy 20 (6.38) |

o Coefficient de compressibilité isotherme : (6.36) et (6.38) dans (5.53)

(6%U
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6.5.4 Criteres de stabilité des potentiels thermodynamiques

o Concavité locale de I'énergie libre : (5.10) et (6.35) : (6.40)

o Convexité locale de I'énergie libre : (5.12) et (6.39) : (6.40)

J

(6.41)J

@ Courbure de Gauss négative : surface F' (T, V) dans |'espace des états
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@ Courbure de Gauss : déterminant de la matrice hessienne de |'énergie
libre

(6.42)
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6.5.4 Criteres de stabilité des potentiels thermodynamiques

o Convexité locale de I'enthalpie : (5.22) et (6.38) : (6.43)

e Concavité locale de I'enthalpie : (5.52) et (6.36) : (6.43)

@ Courbure de Gauss négative : surface H (S,p) dans I'espace des états

(6.44)J
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Criteres de stabilité des potentiels thermodynamiques

@ Courbure de Gauss : déterminant de la matrice hessienne de |'enthalpie

(6.45)
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6.5.4 Criteres de stabilité des potentiels thermodynamiques

@ Concavité locale de I'énergie libre de Gibbs : (5.22) et (6.38) : (6.46)

J

e Concavité locale de I'énergie libre de Gibbs : (5.12) et (6.39) : (6.46)

@ Courbure de Gauss positive : surface G (T, p) dans I'espace des états

(6.47)J
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6.5.4 Criteres de stabilité des potentiels thermodynamiques

@ Courbure de Gauss : déterminant de la matrice hessienne de I'énergie
libre de Gibbs

(6.48)
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6.5.4 Criteres de stabilité des potentiels thermodynamiques

@ Courbure locale de I'énergie interne :

92U (S, V) 92U (S, V)

>0 t >0 6.15
052 : V2 (6.15)
@ Courbure locale de I'énergie libre :
O*°F (T,V) O°F (T,V)
< > 4
573 0 et 5172 0 (6.40)
@ Courbure locale de I'enthalpie :
O0%H (S, p) 0*H (S, p)
—= =0 t — <0 6.43
052 e op? (0.43)
@ Courbure locale de I'énergie libre de Gibbs :
892G (T, p) 0°G (T, p)
< t < 4
573 0 C 2 0 (6.46)

Les potentiels thermodynamiques U (S, V), F (T,V), H (S,p) et
G (T, p) sont des fonctions convexes de leurs variables d'état extensives V/

et S et des fonctions concaves de leurs variables d'état intensives 1’ et p.
Y
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6.6 Transitions de phase

6.6 Transitions de phase

6.6.1
6.6.2
6.6.3
6.6.4
6.6.5

Dr. Sylvain Bréchet

Types de transition de phase

Phases et coexistence de phase

Transitions de phases - solide, liquide et gaz
Diagramme de phases - solide, liquide et gaz
Point critique et phase fluide
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6.6.1 Types de transition de phase

@ Phase : une phase est un état de la matiere qui occupe un sous-espace
de |'espace des états caractérisé par des propriétés physiques particulieres
du systeme, noté avec des lettres grecques («, [, etc...)

@ Transition de phase : une transition de phase est le passage d'une phase
instable vers une phase stable du systéme en réponse a un processus.

@ Classification d’Ehrenfest : deux types de transitions de phase

© Transitions de phase du premier ordre : elles sont caractérisées par des
discontinuités des dérivées premieres de |'énergie libre de Gibbs G,
c'est-a-dire I'entropie S et le volume V. C'est le cas des transitions de
phase entre les états solide, liquide et gazeux.

oG (T, p) oG (T, p)
oT Op

@ Transitions de phase du deuxiéme ordre : elles sont caractérisées par
des discontinuités des dérivées secondes de |'énergie libre de Gibbs G,
c'est-a-dire la capacité thermique isobare C, et le coefficient de
compressibilité isotherme xr. C'est le cas des transitions de phase entre
les états liquide et gazeux passant par le point critique.

8°G (T, p) 1 9°G (T, p)

IE R AT

S(T,p) = — et V(T,p) =

Cp=—T
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Phases et coexistence de phase

V = cste

I
I
I
I Oé—I‘ﬁ :
I
I
I
|

=
s, s

@ Diagramme : US : énergie interne - entropie : V' = cste

Dr. Sylvain Bréchet

Phase pure : («) courbe entre (0,0) et (U1, S1)

Phase pure : (§) courbe entre (Uz, S2) et (00, 00)

Coexistence de phases : (« et 3) ligne entre (U1, S1) et (Uz, S2)
U(S,V)=U (51,52, Vi, Vo, A\) = (1 = A)U(S1, V1) + AU(S2,V2) (6.31)

La proportion de chaque phase est donnée par une combinaison linéaire en
fonction du parameétre A € [0, 1].

Température : transition de phase : pente de la ligne de coexistence
oU (S,V) U(S2,V2) = U (S1,V1) U2x— U
0S So — 51 S — 5

6 Transitions de phase

T —

(6.32)

= cste
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6.6.2 Phases et coexistence de phase

@ Diagramme : UV : énergie interne - volume : S = cste
© Phase pure : () courbe entre (0,0) et (U1, V1)
© Phase pure : (3) courbe entre (Us, V2) et (00, 00)
© Coexistence de phases : (« et 3) ligne entre (U1, V1) et (Uz, V2)
U(S,V)=U (51,52, Vi, Vo, \) = (1 = A U(S1, V1) + AU(S2,V2) (6.31)

La proportion de chaque phase est donnée par une combinaison linéaire en
fonction du parameétre A € [0, 1].

@ Pression : transition de phase : — pente de la ligne de coexistence
oU (S,V) U (S2,V2) = U (51, V1) Uz — Uy
=— =— =— = cste (6.
b oV Vo — V1 Vo — V1 cste (6.33)
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6.6.3 Transitions de phases - solide, liquide et gaz

p = cste

Gg|

: . : > P
Solide Ty Liquide T, Gaz Gaz py Liquide pyf Solide

@ A température 1" et pression p fixées, |'état d'équilibre stable minimise
I'énergie libre de Gibbs G : dG (T,p,{N,}) <0 (4.70)

(6.49)

© Phase solide : a température T' < Ty et a pression p > py, |'état stable
qui minimise |I'énergie libre de Gibbs G est I'état solide.

© Phase liquide : a température Ty <'T' < T, et a pression p, < p < py,
|'état stable qui minimise I'énergie libre de Gibbs GG est I'état liquide.

© Phase gazeuse : a température 1" > T, et a pression p < p,, |'état stable
qui minimise |'énergie libre de Gibbs GG est I'état gazeux.
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6.6.3 Transitions de phases - solide, liquide et gaz

p = cste

o))

Ga

S =1

Gg|

|
. >
Solide Ty Liquide 7T, Gaz Gaz py Liquide pf Solide b

e Concavité de I'énergie libre de Gibbs : C, >0 et y7 > 0 phase «

(6.50)
@ Pentes des diagrammes : entropie et le volume

(6.51)
@ Discontinuité des pentes : transitions de phase du premier ordre

(6.52)
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6.6.4 Diagramme de phases - solide, liquide et gaz

@ A température 1" et pression p fixées, |'état d'équilibre stable minimise
I'énergie libre de Gibbs G : dG (T,p,{N,}) <0 (4.70)

(4.43)

@ La phase stable a € {s,¢, g} est celle dont le potentiel chimique p,, est

minimal.

e Diagramme de phases : (p,T)
p

A

© Domaine de phase solide : o = s

(6.54)

Solide
@ Domaine de phase liquide : o = /¢
(6.55)

© Domaine de phase gazeuse : o = g

(6.56)

Point critique

Liquide

Gaz

Point triple

> T
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6.6.4 Diagramme de phases - solide, liquide et gaz

Q

Dr. Sylvain Bréchet

Courbe de coexistence de phase :

Courbe de coexistence de phase :

Courbe de coexistence de phase :

Point triple :

(6.57) 7 A

(6.58)

(6.59)

(6.60)

Solide

Liquide

Point triple

Point critique

Gaz

> T

Points triples : pour une substance donnée, il peut y avoir plusieurs
phases solides ou liquides, et donc plusieurs points triples, mais il n'y a

qu'une seule phase gazeuse.

Point critique : au-dela d'une température 1, et d'une pression p., la
courbe de coexistence de phase entre les phases liquide et gazeuse
s'arréte brusquement en un point appelé le point critique.

6 Transitions de phase
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6.6.4 Expérience - Diagramme de phase (p,T)

e Diagramme de phase : (p,T) - la phase solide est rouge, la phase
liquide est bleue, la phase gazeuse est orange et la phase fluide est jaune.

© Gaz parfait : une phase gazeuse unique (le gaz est un fluide parfait).

@ COs : la courbe de coexistence des phases solide et liquide a une pente
positive. L'isotherme a température critique est la courbe noire.

© H->O : la courbe de coexistence des phases solide et liquide a une pente
négative (anomalie). L'isotherme a température critique est la courbe
noire.
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Expérience - Point triple de lI'azote

@ Le point triple de I'azote moléculaire Ny est un point du digramme de
phase (T, p) défini par une pression p; = 12.6 kPa et une température de
Ty = —210°C.

@ Au point triple, les trois phases de I'azote moléculaire coexistent. La
phase solide s, la phase liquide / et la phase gazeuse g sont a I'équilibre

chimique : ps = pp = py.
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6.6.5 Point critique et phase fluide

" A

Point critique

Solide

Point triple

@ Transitions de phases : liquide-gaz

© Température sous-critique : (7' < T.) transition de phase du premier
ordre a travers la courbe de coexistence de phase (discontinuité du volume
et de I'entropie).

© Température critique : (7' = T¢) transition de phase du deuxieme ordre a
travers le point critique (continuité du volume et de I'entropie).

© Température surcritique : (T > T.) pas de transition de phase au-dela
du point critique.

@ Phase fluide : le liquide et le gaz forment une seule phase fluide.
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6.6.5 Expérience - Point critique d’un gaz réel

@ On remplit une cellule vitrée d'une subtance que I'on peut chauffer et
comprimer.

@ On observe une transition de phase entre la phase gazeuse et la phase
liquide en régime de température sous-critique (T' < T¢).

@ On n’observe pas de transition de phase dans le fluide en régime de
température surcritique (1" > T¢).

© Au point critique (T = T¢), on a un mélange complet des phases liquide
et gazeuse dont les indices de réfraction sont différents. La lumiere ne
parvient plus a traverser la substance : c'est |'opalescence critique.
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6.7 Chaleur latente

6.7 Chaleur latente
6.7.1 Chaleur latente de fusion et de vaporisation
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6.7.1 Chaleur latente de fusion et de vaporisation

@ Chaleur latente : chaleur fournie a la substance lors d'un processus a
température constante d'un état initial ¢ a un état final f.

f Sy
Qz’—>f:/ 5Q:T/ dS:T(Sf— Si):TASi_)f (2.41)
) S

7

e Chaleur latente de transition de phase : chaleur (), 3 fournie a la
substance lors d'une transition de phase a température I' constante d'une
phase initiale & a une phase finale £.

(6.61)

© Chaleur latente de fusion : chaleur (Js_,, fournie a la substance lors de
la fusion a température 1.

(6.62)

© Chaleur latente de vaporisation : chaleur QQ;—,, fournie a la substance
lors de |la vaporisation a température T’,.

(6.62)
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6.7.1 Chaleur latente de fusion et de vaporisation

@ Transition de phase : o« — [
Q@ N._3 : nombre de moles effectuant la transition de phase o — 3
@ N. : nombre de moles dans la phase initiale o

© N3 : nombre de moles dans la phase finale 3

@ Bilan : de transition de phase

(6.63)
@ Chaleur latente : de transition de phase par mole (6.61) / (6.63)

(6.64)
@ Chaleur latente molaire : de transition de phase

(6.65)
e Entropies molaires :

(6.66)
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6.7.1 Chaleur latente de fusion et de vaporisation

@ Chaleur latente molaire : de transition de phase o — (3
(6.65) et (6.66) dans (6.64)

(6.67)

@ Notation : lettres minuscules pour les grandeurs densitaires (molaires,
volumiques, massiques).

© Chaleur latente molaire de fusion : chaleur fournie a une mole de
substance lors de la fusion a température T%.

(6.68) |

© Chaleur latente molaire de vaporisation : chaleur fournie a une mole
de substance lors de |la vaporisation a température T;,.

(6.68) |
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6.7.1 Chaleur latente de fusion et de vaporisation

(oo =6-10% J-mol ™!
lpg =4 - 10* J - mol™?

Cse gﬁg

W s(J-Kt-mol?)
|||||||||||||||||||I||>

0 100 200

© Chaleur latente molaire de fusion de la glace : surface rectangulaire
bleu clair a température de fusion Ty = 273 K

(63_>g)H2O =T¢(s¢— s5) =6 10% J - mol™*

© Chaleur latente molaire de vaporisation de lI'eau : surface
rectangulaire bleu foncé a température de vaporisation 7, = 373 K

Losg)i,o = To(5g — s0) =4+ 10* J - mol ™!
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6.8 Relation de Clausius-Clapeyron

6.8 Relation de Clausius-Clapeyron
6.8.1 Relation de Clausius-Clapeyron
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6.8.1 Relation de Clausius-Clapeyron

@ Coexistence de phase : équilibre chimique entre les phases « et 3
(6.75)

o Différentielle du potentiel chimique : courbe de coexistence de phase

(6.76)
@ Relations de Gibbs-Duhem : phases o et
(4.9)
@ Entropie et volume molaires : grandeurs densitaires
@ Relations de Gibbs-Duhem molaires : phases o et
(6.77)
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6.8.1 Relation de Clausius-Clapeyron

o Différentielle du potentiel chimique : courbe de coexistence de phase

due (T, p) = dug (T, p) (6.76)

@ Relations de Gibbs-Duhem molaires : phases o et

dipe, (T, p) = — So. dT + vy dp

dpp (T, p) = — s dT + vg dp (8.77)
@ Courbe de coexistence de phase : (6.77) dans (6.76)
(6.78)
e Courbe de coexistence de phase : (6.78) remise en forme
— (88 — Sa)dT + (vg — Vo) dp =0 (6.79)

@ Courbe de coexistence de phase : pente diagramme (p,T)

(6.80)
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6.8.1 Relation de Clausius-Clapeyron

e Courbe de coexistence de phase : pente diagramme (p,T')

dp  sg — Sa
el 6.80
dI' vg — V4 (6.80)
e Chaleurs latentes molaires de transition de phase : (6.67)
fa_>5 =T (85 — Sa) (6.81)
@ Relation de Clausius-Clapeyron : (6.81) dans (6.80)
(6.82)

@ Relations de Clausius-Clapeyron : fusion et vaporisation

(6.83)J
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6.9 Regle des phases de Gibbs

6.9 Regle des phases de Gibbs
6.9.1 Regle des phases de Gibbs
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6.9.1 Regle des phases de Gibbs

@ Systéme : constitué de r substances chimiques réparties dans m phases
en absence de réaction chimique entre les substances.

@ Equilibre : entre les phases

@ Thermique : a température T°
@ Mécanique : a pression p

© Chimique : pour toute substance A dans chaque phase «

@ Phase : chaque phase a peut étre modélisée comme un sous-systeme
simple décrit par les variables d'état T', p et {c§}.

@ Nombre de moles : dans la phase «

(6.85)

@ Concentration molaire : substance A dans |la phase «

(6.90)J
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6.9.1 Regle des phases de Gibbs

@ Somme des concentrations : dans la phase « (6.85) et (6.90)

(6.94)

L'équation (6.94) impose une condition sur les concentrations c§ des
substances dans chaque phase «. Ainsi, il y a » — 1 variables
indépendantes c{ dans chaque phase . Comme il y a m phases, il y a
donc m (r — 1) variables indépendantes ¢ ¢ dans le systeme.

@ Equilibre chimique : substance A dans les m phases

(6.95)

@ La condition d'équilibre chimique (6.62) impose m — 1 contraintes sur les
potentiels chimiques 1§ de chaque substance A. Comme, il y a r
substances, il y a donc r (m — 1) contraintes imposées sur le systeme.
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6.9.1 Regle des phases de Gibbs

o Variables d’état : 7', p et {c{} : nombre : 2+ m (r — 1)
e Contraintes : nombre : 7 (m — 1)

o Regle des phases de Gibbs : degrés de liberté : diagramme (p,T))

(6.96) |

© Une substance dans une phase : 2 degrés de liberté : (p,T)

© Une substance dans deux phases : 1 degré de lib. (coexistence) : p (7))

© Une substance dans trois phases : 0 degré de liberté (point triple)
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6.9.1 Expérience - Phases du fer

@ Phases du fer :
© Solide : cubique centré (cc) : température T' < 910°C
© Solide : cubique face centré (cfc) : température 910°C < T' < 1535°C
@ Liquide : T > 1535°C

© On chauffe un fil de fer a I'aide d'un courant électrique. Le fil se
contracte lors de la transition de la phase (cc) a la phase (cfc). Le poids
suspendu au centre du fil de fer monte.

© On laisse le fil se refroidir et il se dilate lors de la transition de phase de
la phase (cfc) a la phase (cc). Le poids suspendu au centre du fil de fer
descend.
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6.10 Gaz de van der Waals

6.10 Gaz de van der Waals
6.10.1 Egquation d’état du gaz de van der Waals
6.10.2 Transition de phase du gaz de van der Waals
6.10.3 Construction de Maxwell
6.10.4 Gaz réel
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6.10.1 Equation d’état du gaz de van der Waals

@ Gaz parfait : modele de gaz idéalisé
Interaction moléculaire : chocs élastiques de points matériels

(5.66)

@ On néglige les forces d'attraction entre les atomes et molécules.
@ On néglige le volume propre occupé par les atomes et molécules.

© On ne peut pas décrire de transition de phase.

@ Gaz de van der Waals : modele de gaz réel
Interaction moléculaire : forces attractives entre des spheres dures

(6.102)J

@ On rend compte des forces d'attraction entre les atomes et molécules
décrites par le parametre a > 0.

@ On rend compte du volume propre occupé par les atomes et molécules
décrit par le parametre b > 0.

© On peut décrire une transition de phase.
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6.10.1 Equation d’état du gaz de van der Waals

@ Energie interne : |'énergie interne du gaz de van der Waals est la
somme de |'énergie interne du gaz parfait U* et de I'énergie potentielle
d’'interaction moléculaire —a N n. L'énergie potentielle d'interaction
moléculaire est proportionnelle au nombre N de moles de substance et au
nombre de moles de molécules voisines qui est proportionnel a la densité
volumique n de molécules.

(6.97)

ou I'énergie potentielle d'interaction moléculaire est négative car les
forces sont attractives, i.e a > 0.

@ Dérivées partielle : énergie interne

(6.98)

@ Pression :

(6.99)

ou les forces moléculaires attractives réduisent la pression, i.e. p < p*.
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6.10.1 Equation d’état du gaz de van der Waals

@ Pression : la pression du gaz de van der Waals est la différence entre la
pression du gaz parfait p* et la chute de pression due aux forces
attractives.

a N? o a N?
12 ainsi P =p-+ 2

p=p"— (6.99)

@ Volume : le volume du gaz de van der Waals est la somme du volume du
gaz parfait V* et du volume N b occupé par N moles de sphéres dures.

(6.100)
@ Equation d’état : gaz parfait
p*V*=NRT (5.66)

o Equation d’état : gaz de van der Waals : (6.99) et (6.100) dans (5.66)

(6.102)
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6.10.1 Equation d’état du gaz de van der Waals

e Equation d’état molaire : (6.102) ou le volume molaire v = V/N

@ Pression :

(6.103)
e Point critique : point d’inflexion (p.,v.) du digramme (p, v)

(6.104)
e Point critique : condition d’inflexion (6.103) dans (6.104)

(6.105)
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6.10.1 Equation d’état du gaz de van der Waals

@ Volume critique : combinaison des équations (6.105)

o Température critique : (6.106) dans (6.105)

@ Pression critique : (6.106) et (6.107) dans (6.103)

@ Grandeurs réduites : sans dimension

e Equation d’état molaire : (6.109) dans (6.103)

Dr. Sylvain Bréchet
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(6.106)

(6.107)

(6.108)

(6.109)

(6.110)
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6.10.1 Equation d’état du gaz de van der Waals

o Equation d’état molaire réduite : universelle (6.110) - 270%/a

(6.111)J

Cette équation est indépendante de la nature du gaz décrit par a et b.

o \

2.5

2.0

1.5
T.=1.0

1.0

-

C
0.5 . : —
Vﬁo.s
[0 I R A et 5 IS T Y N T Y Y T NN T Y N T T
1 2

3 4 Uy

)

e Point critique : (p.,v.,T.) = (pr = 1,0, =1,T,. = 1)
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6.10.2 Transition de phase du gaz de van der Waals

@ Processus isothermes : a température constante : courbes fines

@ Coexistence de phases : domaine sous la courbe épaisse

o \

2.5
2.0
1.5

1.0

0.5

III’_I‘|IIII|IIII|IIII|IIII|

liquide + gaz

0_0||||||||||||||||||||>
0 1 2 3 4 Uy

o Transition de phase : diagramme (p;, v;-) isothermes d'Andrews
© Premier ordre : (température sous-critique) T < T, ainsi T, < 1
© Deuxieme ordre : (température critique) T =T, ainsi T, =1

© Aucune : (température surcritique) T > T, ainsi T, > 1
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6.10.2 Expérience - Diagramme de phase (p,v)

22,415 m° we—tp Vi

o Diagramme de phase : (p,v) - la phase solide est rouge, la phase
liquide est bleue, la phase gazeuse est orange, la phase fluide est jaune.
La coexistence de phases solide et gazeuse est brune, la coexistence de
phases liquide et gazeuse est verte et la coexistence de phases solide et
liquide est noire.

© Gaz parfait : une phase gazeuse unique (le gaz est un fluide parfait).

@ COs : la surface de coexistence des phases solide et liquide est visible.
L'isotherme a température critique est la courbe noire.

© H-O : la surface de coexistence des phases solide et liquide n’est pas

visible (anomalie). L'isotherme a température critique est la courbe noire.
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6.10.3 Construction de Maxwell

o Condition locale de stabilité : digramme (p,v) (6.32) ou N = cste
(6.112)

@ Processus isotherme sous-critique : la courbe bleue entre les points 1
et 2 (traitillé) ne satisfait pas la condition locale de stabilité. Entre ces
points, la courbe doit étre remplacée par une ligne de pente nulle (trait
plein) qui sature I'inégalité (6.112) ou T, = cste et p, = cste. Cette ligne
décrit une transition entre les phases liquide et gazeuse.

p, A
2.5 ~
2.0 |
B fluide
C T, =12
1.5 F
C T.=10
L C
1.0 —
| ‘
B } —
05 . . gaz
“liquide 9
- liquide + gaz
0'0-||||||||||||||||||||>
0 1 2 3 4 Uy
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6.10.3 Construction de Maxwell

e Variation de I'énergie libre molaire : processus isotherme (4.77)

(6.114)
o Construction de Maxwell : (6.114) divisé par p. et v,

(6.115)
v, A
2.5
2.0

fluide
T, =12

1.5

III'_I||IIII|IIII|IIII|IIII|

1.0
\7
0.5 \,,' gaZ
2
liquide + gaz
0.0 [ N I NN NN MR N | -
0 1 2 3 4 Uy
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6.10.3 Construction de Maxwell

@ Construction de Maxwell : pour que l'intégrale qui représente I'aire
sous la courbe p,. (v,.) soit égale a la surface rectangulaire sous la droite
1-2, il faut que les aires (bleues) au-dessus et au-dessous de la droite
soient égales.

@ Courbe de saturation : la construction de Maxwell permet de
déterminer les points de coexistence de phases 1 et 2 sur une isotherme
sous-critique. L'ensemble de ces points forme la courbe de saturation
(trait épais).

p, A
2.5 N
20
C fluide
[~ T.=1.2
1.5
C T.=1.0
1.0
- —
0.5 . . gaz
Cliquide
B liquide + gaz
0.0 " [ T NN TR SRR R T | -
0 3 4 Uy

Dr. Sylvain Bréchet 6 Transitions de phase 93 / 116



6.10.3 Construction de Maxwell

@ Région de coexistence de phase : au-dessous de la courbe de
saturation, on ne peut pas attribuer un volume molaire réduit unique v, a
la substance qui est constituée d'une phase liquide et d'une phase
gazeuse de volumes molaires différents. Lors d'un processus isotherme et
isobare (a température et pression constantes) entre les points 1 et 2,
I"état de la substance est une combinaison linéaire des deux phases dans
une proportion donnée par la regle du levier.

e Vaporisation : (1 — 2) lors d'une vaporisation (processus isotherme et
isobare), lorsque le liquide est au point 1, la phase gazeuse apparait. Sa
proportion augmente ensuite de maniére linéaire jusqu'a ce que la phase
liquide ait entierement disparue lorsque le gaz est au point 2.

e Condensation : (2 — 1) lors d'une condensation (processus isotherme
et isobare), lorsque le gaz est au point de coexistence 2, la phase liquide
apparait. Sa proportion augmente ensuite de maniere linéaire jusqu'a ce
que la phase gazeuse ait entierement disparue lorsque le liquide est au
point 1.
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6.10.4 Gaz réel

@ Gaz réel : pour décrire des transitions de phase entre les phases solide,
liquide et gazeuse, il faut améliorer le modele du gaz de van der Waals
afin d'obtenir un modele plus général. Un processus isotherme
sous-critique est représenté par une courbe bleue.

95 / 116
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Expérience - Cycle de van der Waals

. 5 N

@ Cycle de van der Waals : une substance effectue un cycle sur un
diagramme de phase (p,v). Le cycle est constitué de 6 processus qui
contournent le point critique de la substance dans le sens
trigonométrique.

@ Vaporisation : processus isochore et isobare : T' < T, et p < p.
@ Détente isotherme : processus isotherme : T' < T¢

© Compression isochore : processus isochore : V > V.

© Compression isotherme : processus isotherme : T > T,

©@ Contraction isobare : processus isochore : p > p.

© Détente isotherme : processus isotherme : T' < 1%
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6.11 Applications

6.11 Applications
6.11.1 Energie interne et enthalpie du gaz de van der Waals
6.11.2 Concavité de I'entropie
6.11.3 Convexité de I’énergie interne
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6.11.1 Energie interne et enthalpie du gaz de van der Waals

o Energie interne : gaz de van der Waals (6.97)

(6.116)

e Capacité thermique : isochore (6.117)
(6.117)

o Energie interne : (6.117) dans (6.116)

(6.118)J

o Différentielle de I'énergie interne : (6.118) systeme fermé

(6.119)J

@ Variation de I'énergie interne : état initial ¢ — état final f

(6.120)

Dr. Sylvain Bréchet 6 Transitions de phase 98 / 116



6.11.1 Energie interne et enthalpie du gaz de van der Waals

@ Détente de Joule : on analyse la détente de Joule gaz de van der Waals
en se basant sur son énergie interne (6.118).

@ Variation de I'énergie interne : systéme isolé

1 1
AUi_ﬁ‘:CV (Tf— Ti)— CLN2 (—— —) =0 (6120)
Vi V;
e Variation de température : détente de Joule (6.120)

(6.121)

o Coefficient de Joule : détente de Joule (6.121)

(6.122)J

Lors de la détente de Joule, le volume augmente, i.e. V¢ >V}, ce qui
implique que la température diminue, i.e. Ty < T;. On constate que
I'introduction d'une force d'attraction, caractérisée par le parametre
a > 0, rend compte d'un léger refroidissement.
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6.11.1 Energie interne et enthalpie du gaz de van der Waals

o Différentielle de I'enthalpie : systeme fermé : NV = cste

dH(S(T,p),p) =TdS(T,p)+V (T,p)dp (6.123)
Différentielle de I'entropie :

_95(T,p) 95 (T, p)
dS (T,p) = 5T dT + o dp (5.96)

Relation de Maxwell : énergie libre de Gibbs G (T, p)
oS (T,p) oV (T,p)

Op orT
Capacité thermique isobare et coefficient de dilatation isobare :

05 (T, p) 1 oV (T,p) 1 09S5(T,p)

t p— p—
T Ty Tor V. op

Différentielle de I’enthalpie : (5.96) dans (6.123)

(4.91)

C,=T

(6.124)
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6.11.1 Energie interne et enthalpie du gaz de van der Waals

o Différentielle de I'enthalpie : (6.124) remis en forme
dH(S (T, p) ,p) = CydT +(1— o, T)V (T,p) dp (6.125)

@ Coefficient de dilatation isobare :

1 9V (T,p)
Vo aT

o Différentielle de I’enthalpie : (5.11) dans (6.125)

Q= (5.11)

(6.126)

o Identité cyclique de dérivées partielles : V (T, p), T (V,p) et p(T,V)

oV (T,p) 0T (V,p) Op(T,V)
oT Op oV

— 1 (6.127)

o Dérivée partielle du volume : (6.127)

(6.128)
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6.11.1 Energie interne et enthalpie du gaz de van der Waals

o Différentielle de I'enthalpie : (6.128) dans (6.126) donne (6.129)

o Equation d’état : gaz de van der Waals (6.102)

NRT a N?
T — — 1
@ Dérivées partielles : pression
(6.131)
@ Produit de dérivées partielles : (6.131)
(6.132)
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6.11.1 Energie interne et enthalpie du gaz de van der Waals

e Equation d’état : gaz de van der Waals

NRT a N?
T — — 1
@ Produit de dérivées partielles :
op (T, V) (Op(T,V)\ " NRT(V — Nb
g p(f)f | (pgx} )> T 2aNZ(V (Nb2 ) (6.132)
- (V3— ) NRT

@ Gaz dilué : les parameétres a et b d'un gaz dilué sont suffisamment petits
pour qu’'on puisse négliger les termes en a b au premier ordre en a et b, et
sa pression p est trés voisine de celle d’un gaz parfait : (6.134)

(6.136)
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6.11.1 Energie interne et enthalpie du gaz de van der Waals

o Gaz dilué :
2a N
<1

1
RTV (6.136)

@ Produit de dérivées partielles : dévelop. limité au premier ordre (6.134)

(6.137)

@ Produit de dérivées partielles : gaz dilué : produit a b négligeable

(6.138)
o Différentielle de I’enthalpie : (6.129)

o Différentielle de I'enthalpie : (6.138) dans (6.129)

(6.139)J
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6.11.1 Energie interne et enthalpie du gaz de van der Waals

@ Théoreme de Schwarz : enthalpie H(S (T, p) ,p)

(6.140)
@ Relation de Maxwell : enthalpie H(S (T, p) ,p)
(6.141)
o Gaz dilué :
zc;]‘\i <1 (6.136)
o Relation de Maxwell : (6.136) dans (6.141)
(6.142)
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6.11.1 Energie interne et enthalpie du gaz de van der Waals

@ Capacité thermique isobare : indépendante de la pression
—= ~0 (6.142)

Pour un gaz dilué, la capacité thermique isobare C), est indépendante de
la pression. Comme le gaz de van der Waals se réduit au gaz parfait
lorsque la pression du systeme est suffisamment petite, la capacité
thermique isobare du gaz dilué de van der Waals, qui est indépendante de
la pression, doit étre égale a celle du gaz parfait.

e Capacité thermique isobare : (5.83)
(6.143)
o Différentielle de I'enthalpie : (6.143) dans (6.139)

e Enthalpie : gaz dilué

(6.144)J
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6.11.1 Energie interne et enthalpie du gaz de van der Waals

e Enthalpie : gaz dilué

H(S(T,p),p)szT— <2aN—Nb)p (6.144)

@ Détente de Joule-Thomson : on analyse la détente isenthalpique de
Joule-Thomson d'un gaz dilué de van der Waals en se basant sur son
enthalpie (6.144) qui est constante.

e Variation d’enthalpie : état initial 7 — état final f : (6.145)

e Variation de température : (6.145)

(6.146)

e Approximation : température moyenne (1; + 1) /2

(6.147)
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6.11.1 Energie interne et enthalpie du gaz de van der Waals

@ Variation de température :

1 2a N 2a N
T, — T, = — — Nb — — Nb | p; 06.146
-1 (R 3w (Tm - v)p)  Gwe

e Approximation : température moyenne (1; + 1) /2

D D; 2
vf _ P — 6.147
T, T, ﬂ+ﬂ@f1” ( )

e Variation de température : (6.147) dans (6.146)

(6.148)

o Coefficient de Joule-Thomson : (6.129) dans (6.136)

(mmJ

Le signe du coefficient dépend du gaz et de la température. Il est négatif
pour |'air et positif pour I'hélium a température ambiante.
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6.11.2 Concavité de I’entropie

e Concavité de I'entropie : S (U,V)

1
: (S (U — AU,V — AV) +S(U+AU,V+AV)) < S(U,V) (6.152)
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6.11.2 Concavité de I’entropie

e Concavité de I'entropie : S (U,V)

1
- (S(U— AU,V — AV) +S(U+AU,V+AV)) < S(U,V) (6.152)

o Développement limité : au 2¢ ordre de S (U + AU,V + AV) (6.153)

o Développement limité : au 2° ordre de S (U — AU,V — AV) (6.154)

e Condition de concavité : (6.153) et (6.154) dans (6.152)

(6.155)
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6.11.2 Concavité de I’entropie

@ Condition de concavité :

S (UV) s s S (V) 925 (U, V)
gz AU T2 gy AUAV A —55

AV? <0 (6.155)

e Variation du deuxiéme ordre : de |'entropie (6.156)

e Variation du deuxiéme ordre : (6.156) dans (6.155) : (6.157)

e Matrice hessienne de I’entropie : H (S) est symétrique et semi-définie
négative (6.157). Ainsi, elle est diagonalisable avec deux valeurs propres
négatives ou nulles.
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6.11.2 Concavité de I’entropie

e Variation du deuxiéme ordre : (6.156) dans (6.155) : (6.157)
(6QS(U, V) 0?S(U,V)

, Rk oU 8V AU
A5 (U, V) = (AU, AV) <0
S (U, V) 9SU,V) | \av
oV aU vz

o Matrice hessienne de I'entropie : H (S) est symétrique et semi-définie

négative (6.157). Ainsi, elle est diagonalisable avec deux valeurs propres
négatives ou nulles :

o Déterminant de la matrice hessienne : (6.159)

La condition locale de concavité (6.159) signifie que la fonction entropie

S (U, V') est une surface de courbure de Gauss positive dans |'espace des
états (U, S,V).
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6.11.3 Convexité de I’énergie interne

o Convexité de I'énergie interne : U (S, V) entre U (51, V1) et U (So, V3)

1
: (U (S— AS,V — AV) +U(S+AS,V+AV)) > U(S,V) (6.161)
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6.11.3 Convexité de I’énergie interne

o Convexité de I'énergie interne : U (S, V)

% (U (S— AS,V — AV) +U(S+AS,V+AV)> > U(S,V) (6.161)

o Développement limité : au 2¢ ordre de U (S + AS,V + AV) (6.162)

o Développement limité : au 2¢ ordre de U (S — AS,V — AV) (6.163)

e Condition de convexité : (6.162) et (6.163) dans (6.161)

(6.164)
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6.11.3 Convexité de I’énergie interne

e Condition de convexité : (6.162) et (6.163) dans (6.161)

U (S, V) ., 90U (S, V) 0*U (S,V)
Far ASTH2 T S AS AV =

AV? >0 (6.164)

e Variation du deuxiéme ordre : de |I'énergie interne (6.165)

e Variation du deuxieme ordre : (6.165) dans (6.164) : (6.166)

e Matrice hessienne de I'énergie interne : H (U) est symétrique et
semi-définie positive (6.166). Ainsi, elle est diagonalisable avec deux
valeurs propres positives ou nulles.
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6.11.2 Concavité de I’entropie

e Variation du deuxiéme ordre : (6.165) dans (6.164) : (6.166)
(82U(S, V) 0°U (S,V) \

, 05> S oV AS
AU (5,V) = (AS, AV) >0
Q?U (8,V) 8°U(S.v) | \av
oV aU v )

@ Matrice hessienne de I'énergie interne : H (U) est symétrique et
semi-définie positive (6.166). Ainsi, elle est diagonalisable avec deux
valeurs propres positives ou nulles :

o Déterminant de la matrice hessienne : (6.167)

La condition locale de convexité (6.167) signifie que la fonction énergie
interne U (5, V') est une surface de courbure de Gauss positive dans
I'espace des états (U, S, V).
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